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Abstract. Many computational photography applications require the
user to take multiple pictures of the same scene with different camera
settings. While this allows to capture more information about the scene
than what is possible with a single image, the approach is limited by the
requirement that the images be perfectly registered. In a typical scenario
the camera is hand-held and is therefore prone to moving during the
capture of an image burst, while the scene is likely to contain moving
objects. Combining such images without careful registration introduces
annoying artifacts in the final image. This paper presents a method to
register exposure stacks in the presence of both camera motion and scene
changes. Our approach warps and modifies the content of the images
in the stack to match that of a reference image. Even in the presence
of large, highly non-rigid displacements we show that the images are
correctly registered to the reference.

1 Introduction

The use of image stacks is gaining popularity among casual and amateur pho-
tographers because it allows the user to overcome some of the intrinsic limita-
tions of standard cameras. One of the most common uses of such approaches
is high-dynamic-range (HDR) imaging: when the contrast of the scene exceeds
what the camera can capture, the user can take multiple pictures with differ-
ent exposure settings, thus effectively acquiring different samples of the scene’s
irradiance. Despite the advantages offered by these techniques, and the prolifer-
ation of dedicated apps for both point-and-shoot cameras and camera phones,
the applicability of stack-based photography is still limited to a set of some-
what constrained scenarios: all these methods generally require that the images
be perfectly registered. A small displacement of the camera between shots, a
branch blown by the wind, the ocean’s waves, or people walking in the scene
generally cause artifacts that can easily void the benefits of combining multiple
images.

Several methods have been proposed that can deal with either camera mo-
tion [1–3] or dynamic scenes [4–6]—often at the cost of discarding some of the
information—but produce sub-optimal results when both sources of artifacts
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are present, as would happen with the stack in Figure 13. Our objective is to
preserve most of the available information from the different shots: instead of
disregarding misaligned pixels, our approach warps and modifies the content of
each image in the stack to better align it with an image of the stack that we
pick as a reference.

We first attempt to map each pixel of each image in the stack to the cor-
responding pixel in the reference image. From the initial incomplete matches
we learn the color transfer function, which captures and describes how the red,
green, and blue intensities change across different shots, and use it to verify
the matches. If we cannot find a match to every reference image pixel in the
other images, possibly because they are occluded, or we do not want to use the
matching pixels because they are too noisy or saturated, we copy the structure
of the missing pixels either from the image we are registering or the reference,
and blend them.

Our algorithm outputs a set of images aligned to each other at the pixel level.
It is as if we froze the time at the reference frame, and created new versions of
that same time instant with different camera settings. The results show that our
method can easily deal with large object motions, significant camera displace-
ment, and occlusions. Moreover it can deal with what can be referred to as the
“branch nightmare”: the common, usually unavoidable problem of natural bod-
ies, such as water or foliage, that move non-rigidly in the scene. In such regions,
most approaches simply disregard all the images in the stack that do not match
the reference; on the contrary, our method still combines information from as
many images of the stack as possible.

(a) (b)

Fig. 1. A stack of 4 images of a non-static scene (bottom row). The stack is affected by
both camera and scene motion, as shown in (a), where the images are directly averaged
together. The result obtained fusing the images after the proposed registration captures
the whole range and is free of artifacts (b).

3 The displacements between the original images, even when large, are often difficult
to appreciate when performing a side-by-side comparison. We refer the reader to the
paper’s website for comparisons between the images:
http://www.cs.duke.edu/~junhu/hdr_registration.html.
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2 Related Work

The creation of HDR images from sets of low-dynamic-range (LDR) shots, while
seemingly straightforward, presents several challenges, in particular when the
user is a casual photographer attempting to take multiple shots of a dynamic
scene with a hand-held device such as a camera phone. The artifacts caused by
misalignment of either moving camera or moving objects can be more unpleasant
than the over- and under-saturation of any of the LDR shots.

Much research has focused on the combination of the LDR images, assuming
perfect registration and completely static scenes. The pioneering work of Mann
and Picard [7] and Devebec and Malik [8] has been refined and extended by recent
work aiming at defining optimal weights based on the noise characteristics of the
sensor (e.g., Akyüz and Reinhard [9], Hasinoff et al. [10], Granados et al. [11],
Robertson et al. [12]). When the same pixel across the stack captures irradiance
from different objects in the scene, whether because of camera motion or changes
in the scene, it generates artifacts commonly referred to as ghosting because the
averaging process produces transparent copies of the moving objects.

To address the problems caused by camera motion only, a solution as simple
as that of using a tripod while acquiring the stack would work. However, having
to carry a tripod strips the convenience of carrying compact cameras or camera
phones fitting in a pocket. A more convenient solution is to register the LDR
images after their capture. The registration algorithms need to be tuned specifi-
cally for HDR stacks as they have to be robust to loss of contrast in the regions
that are not correctly exposed. A few methods have been proposed to address
this problem under the assumption that the scene is static and that some kind
of rigid transformation suffices. The original method proposed by Ward [1] fo-
cuses on translations only and was later extended to account for rotations [4];
Tzimiropoulos et al. find a similarity transformation working in the Fourier do-
main [2]. Tomaszewska and Mantiuk use SIFT descriptors and robust matching
to find a global homography matrix [3]. Even for static scenes, all these meth-
ods are only approximate: a homography can only explain pure rotations of the
camera around its optical center, or different views of a completely planar scene.

A different approach assumes that the LDR images are registered for camera
motion and tackles only the problem of scene changes. A first class of algorithms
detects regions that are likely to generate ghosting by looking at the variance of
a pixel across the stack [6], looking at the entropy [4], or binarizing the images
and isolating the pixels whose binary value changes [13]. They then replace such
regions with a single exposure from the stack, thus limiting the effective captured
range. Gallo et al. [5] attempt to overcome this problem by defining a reference
image and blending together, for each region, only the LDR images that are
consistent with it. Eden et al. [14] avoid the ghosting problem altogether by
using a single LDR image for each part of the scene. Some of these approaches
fail to completely remove the artifacts and, more importantly, they may discard
valuable information.

A second class of algorithms modifies the fusion algorithm to account for
potential sources of ghosting artifacts during the weighting process: Khan et al.
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[15] use kernel estimation, while Zhang and Cham [16] use information about
gradient magnitude and phase. These methods are likely to capture more infor-
mation, but they may also just reduce the artifacts, as opposed to completely
removing them. Moreover, Zhang and Cham rely on the assumption that a given
region is affected by motion only in a small subset of the images in the stack: in
other words, their method can fail if a pixel captures slightly different parts of
the scene in each of the images of the stack, a common case in the presence of
large or continuous, non-rigid motions.

A more elegant approach consists in searching for a non-rigid transformation
between LDR images to address both camera motion and scene changes at the
same time; this is usually performed by means of dense correspondences between
the images. However, standard dense optical flow methods tend to fail due to the
change of exposure between the different images in the stack, in particular when
this causes saturation. Kang et al. [17] address this problem by first boosting the
luminance values of the different images to compensate for the exposure change;
they then rely on the brightness constancy assumption and use Lucas-Kanade
method to compute optical flow. Zimmer et al. [18] take a similar approach but
assume gradient constancy instead. We found that approaches based on optical
flow are limited to cases where the motion between images is small. Moreover,
unless the registration is performed in the linear irradiance domain, the assump-
tion that the gradient is preserved across images in the stack is often too strong:
aside from the obvious case of saturated regions, the non-linear transformation
of the values of the pixels between different images in the stack violates it.

To overcome this limitation, our approach combines the advantage of warping
based on dense correspondences, and that of blending small patches transformed
and pasted from the original images. In Section 4 we show the benefit of this
strategy by means of comparison with the state-of-the-art approaches.

3 Method

Our algorithm attempts to preserve as much information from each image in the
stack as possible. It does not require radiometric calibration and is thus suitable
for approaches that fuse the images in the luminance domain (e.g., Exposure
Fusion by Mertens et al. [19], which we use for the examples in this paper); it
can however be easily adapted to work in the linear irradiance domain.

The workflow starts with the selection of a reference image, to which the
other images in the stack are then aligned. We select it as the picture with the
fewest over- and under-saturated pixels [17, 5]. We first describe the case of two
images and we then explain how to extend it to larger stacks.

3.1 Registering an image pair

Our method comprises several steps, which we explain thoroughly in the remain-
der of this section. Before diving into the details, however, we give an overview
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Fig. 2. The flow of the algorithm to register the source and reference images, see text.

of the method for additional clarity. With reference to Figure 2, given two im-
ages, source and reference, we first attempt to find dense correspondences using
the technique by HaCohen et al. [20]; we then warp the pixels of the source for
which a correspondence is found, and determine how the colors change between
the two images. We use this color transfer function to detect wrong correspon-
dences. The erroneous and incomplete matches result in holes in the warped
source. We solve this problem in two steps: first, we use the mapping between
the colors of the two images to synthesize the pixels’ values in such holes. This
temporary image serves as a starting point for the rest of the computation. Then,
we blend the gradients from the corresponding regions in the source image; we
do so after checking that a homography can account for the motion of the pixels
between the two images, and verifying that the region is consistent with the one
synthesized before using normalized cross-correlation (NCC). For the regions in
which pasting from the source is not possible, we blend the gradients from the
reference. The resulting image is perfectly aligned with the reference by con-
struction, and captures most of the information available in the source. We now
proceed to explain the details of our approach.

The method proposed by HaCohen et al. is a powerful tool that can find
matches across a wide range of appearance changes by applying geometric and
photometric (from RGB to Lab + gradient magnitude) transformations to image
patches, and by looking for local consistency of each match. We found that we
can further improve its outcome by pre-multiplying one of the two images by the
ratio of the exposure times of the pair. The algorithm by HaCohen et al. outputs
the correspondences for many but not all of the source image pixels. Given a map
of correspondences, we forward-warp source pixels to their reference destinations
[21]. Most approaches for registration based on optical flow take the opposite
route and perform backward warping [18, 22, 23]. Backward warping has the
apparent benefit of not producing gaps when the flow field of the source pixels
diverges, and can be done using the texturing hardware of GPUs. However, we
do not want to automatically fill any gaps with potentially inconsistent data; at
this stage we want them to remain explicitly open, as illustrated in Figure 3(a).
The black areas failed to find a match because of occlusions and disocclusions
due to moving objects, change of view point, or because they did not have a
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sufficient amount texture to produce reliable matches. We address those areas
in Section 3.2.
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Fig. 3. (a) The points that are matched for one of the images from the stack in Figure 1
are warped to the corresponding locations in the reference image. Note that despite
the robustness of the approach by HaCohen et al., not all of the image is matched. (b)
The scattergram of the red channel for images 3 and 4 in Figure 1. The fitted τr is
shown in blue on top of the scattergram. The dotted lines show the threshold used to
determine inliers (Equation 3).

Estimation of the color transfer function. Barring noise, the change of RGB
values of all the correctly matched pixels between source and reference should
follow the same transformation; however, because we work in the compressed
domain, the mapping of the colors is not linear. We approximate the mapping
between images taken with different exposure times via three color transfer func-
tions (CTF) τc(c ∈ {r, g, b}), one per channel. A simple parametric fitting, such
as a line or a gamma function, would generally fail because cameras use custom
transformations, including non-linear gamut mapping, as they attempt to create
a visually pleasant picture instead of a faithful reproduction of the subject [24].
Ideally, converting the images to the Lab or YCrCb colorspaces and comput-
ing only the CTF τ for the luminance channel should result in lower chroma
noise, but we found that the accuracy is poor. Therefore, we work directly in
RGB colorspace. This task has been tackled before: Tico and Pulli [25] adapt the
comparagrams proposed by Mann [26] to increase their robustness in the context
of fusion of blurry/noisy image pairs. HaCohen et al. [20] use cubic splines to fit
the color transformation between images of different scenes. We adapt the fit-
ting process to account for the noise added by wrong matches, which are in large
part a consequence of the very nature of exposure stacks: because the images
are acquired with the intent of sampling different parts of the range, they might
have severely over- and under-exposed regions. Essentially, the fitting consists
in finding the optimal solution for the following problem:

τ∗c = argmin
τc

∑
p

(τc(Rc(p))− Swc (p))2 (1)

s.t. τ ′c(B) > 0,∀B ∈ [0, 1], c ∈ {r, g, b}

where Rc and Swc denote the c color channel of reference and warped source im-
ages, respectively, and p is the pixel’s index. To address the presence of outliers,
which may bias the fitting, we use RANSAC. The monotonicity is a common
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requirement [8, 27]. Instead of using cubic splines, we use cubic Hermite splines,
which are globally more stable with respect to small perturbations of the samples
and more importantly, preserve monotonicity of the samples being interpolated.
To achieve a good fit, the selection of the control points that define the Hermite
spline in Figure 3(b) requires some care. First, we divide the full range of values
(x-axis in Figure 3(b)) into k adjacent, non-overlapping intervals and, at each
RANSAC iteration, we take only one sample from each interval. While too few
samples may not capture the behavior of the data, using too many samples may
cause over-fitting of certain regions. In our experiment we found k = 7 to pro-
vide a good compromise. Additionally, there might be parts of the range affected
by too much noise (see Figure 3(b)). RANSAC derives its robustness from the
fact enough samples support the correct model; in sparsely populated regions,
however, this assumption fails and the quality of the fit is largely affected. To
address such cases, at each iteration we accept a set of samples only if all the
points in it are monotonically increasing. Figure 3(b) shows the scattergram and
the fitted Hermite spline τr for images 3 and 4 in the bottom row of Figure 1.
Detection of mismatched pixels. To detect false matches, we compare the RGB
values of all the matched pixels in the warped source Sw with the value predicted
by τc from the corresponding pixel in the reference R. Assuming that pixel p has
been matched, for each channel c = {r, g, b} we accept the match if

|Swc (p)− τc(Rc(p))|√
1 + (τ ′c(Rc(p)))

2
< δ, (2)

where 1/
√

1 + (τ ′c(Rc(p)))
2 projects the vertical distance to the distance along a

direction perpendicular to the fitted color transfer curve. We found that using a
constant threshold δ over the whole range is a poor choice: a larger error should
be tolerated for larger color values. To reflect this, we define

δ = σmed · Swc (p)0.25, (3)

where σmed is median of the standard deviation of the data in the different parts
of the scattergram. We consider all the points not satisfying Equation 2 to be
false positives and add them to the set U of unmatched pixels. The set U can
then be decomposed into a set of disjoint connected components {Cwi }.

3.2 Correcting for missing correspondences

To fill the holes Cwi in Sw caused by missing or rejected matches, we use τc and
synthesize the missing RGB values. This gives us a first approximation of the
final result. Then, we attempt to recover the pixels’ values from the source: if the
region is small, it is often possible to approximate its transformation from the
source with a local homography Hi. For a synthesized region Cwi , we define Bwi
as the minimum bounding box extended by 4 pixels in width and height. Note
that, by construction, Bwi contains enough reliable pixels to estimate Hi, even in
the unlikely case of a perfectly rectangular Cwi . Using the notation indicated in
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matched pixels, as detected by Equation 2. For such regions, we first attempt blending
the gradients from the source: we take a box Bw

i around the hole and, if the motion
from Bi to Bw

i appears to be rigid, we paste the gradients from the source using a local
homography Hi. Otherwise we blend the gradients from the reference image instead.

Figure 4, with the set of pixels Mw
i = Bwi \Cwi and their known correspondences,

we can use RANSAC to estimate Hi from Bi to Bwi .
The assumption that the motion can be approximated by means of a ho-

mography needs to be verified even for small patches, as they might contain
small non-rigid bodies. To address this problem, we look at the set of inliers
Ii determined at RANSAC’s best iteration and check if #Ii

#Mi
< 0.7, where ‘#’

indicates the cardinality of a set. The rationale is that the outlier pixels have
likely moved under a different transformation, suggesting a non-rigid motion
within the patch. For increased robustness, we perform an additional test: using
normalized cross-correlation, we check that this region matches the destination
previously synthesized. For successful candidates, we paste the gradient of S(Ci)
transformed with the homography Hi and blend it in using Poisson blending [28].
If, on the other hand, the result of these tests indicate a non-rigid motion, we
blend the gradients from the reference, as they provide a better approximation
than transforming the pixels directly using τc.

3.3 Registering multiple images

The larger the difference in exposure time between two shots, the more difficult
it is to establish reliable matches; for this reason, instead of directly aligning
all the images to the reference, we align pictures that are adjacent in terms of
exposure time. Consider a four-image stack ordered from brightest (image 1) to
darkest (image 4), and where image 3 has been selected as the reference. We
start by warping the image 2 to 3. We then register image 1 to the already
registered and warped image 2 instead of image 3. The pixels of image 2 should
be at the same locations as those of image 3, but their colors are more similar
to those in image 1 than the colors of image 3 are, thus the matching process
will produce a larger set of correspondences. The result of this stage is a new
stack of LDR images that are perfectly aligned: Figure 5 shows the stack from
Figure 1 aligned.

4 Results

In this section, we show the performance of the proposed algorithm on a number
of challenging stacks. All our results use the Exposure Fusion method by Mertens
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Fig. 5. The registered images from the stack in Figure 1. Note our algorithm correctly
compensated for camera motion, and that all the people have been aligned to those in
the reference image. The fused image is shown in Figure 1(b).

et al. [19]. We start by providing a comparison with state-of-the-art approaches
for globally pre-registered images; while this is an arguably simpler problem, and
there exist algorithms showing good results in such a case, it is an important
benchmark and allows to illustrate some strengths of the proposed approach.

Gallo et al. [5] choose a reference image from the stack, divide it in patches,
and combine patches from the other images only if they are consistent with
the reference itself, without attempting to perform any registration. While their
results are visually pleasing, we claim that such a strategy discards valuable
information. Figure 6 shows a comparison with their method. It also compares
how many of the original pictures have been used for each pixel of the final result.
Note that for large portions of the image Gallo et al. use only one or two images,
discarding blocks both due to motion and over- or under-saturation, while the
proposed algorithm combines more pictures from the stack, only discarding too
bright or dark pixels. This provides a higher contrast in some areas, such as the
dead tree trunk on the left of the image (see electronic version of the paper).

Zhang and Cham [16] address the ghosting problem by weighting correspond-
ing pixels in the stack based on the alignment of their gradients. They show that
their method works well on a number of examples, but some artifacts are not
completely removed, as is evident in the clouds in Figure 8. Rather than non-
rigidly registering the images in the stack, they attenuate or discard pixels that
would produce artifacts: this is the reason why the trees look washed-out. It
should be said that, for stacks larger than 3-4 images, their method allows to re-
move objects appearing in one location in only one image, sometimes a desirable
feature.

Kang et al. [17] and Zimmer et al. [18] are more similar to our approach
in that they attempt to recover the non-rigid pixel transformations between
shots. They both propose elegant solutions to the problem, however, they largely
rely on the quality of the optical flow, whereas we carefully evaluate when the
optical flow works and have a recovery strategy for when it fails. Figure 9 shows
a comparison with Kang et al. While their results are visually pleasant, some
artifacts remain that are caused by mistakes of the optical flow, as shown in the
blow-ups in Figure 9(b). Similar considerations apply to the comparison with
Zimmer et al. (Figure 10): when small objects or people are moving, the optical
flow estimation may fail, in which case the final image is affected by ghosting.
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A particularly difficult case for HDR imaging is that of non-rigid objects
changing their appearance. For example, a typical situation with which amateur
photographers often struggle is that of scenes containing water. Waves and rip-
ples on the surface of the water are extremely difficult to register to begin with,
and the different exposures exacerbate the problem. In Figure 11 we show one
such scene and the result of using our algorithm. We also show the artifacts that
the motion of the water causes by showing the result of fusing the three LDR
images after aligning them with a rigid, global registration.

1
2
3
4

(a) (b)

Fig. 6. A comparison with Gallo et al. [5], here shown in (a). The images on the
right show the number of pictures from the stack used in the fusion (color-coded one
through four). Our algorithm (b) uses more information; this provides a better contrast,
particularly visible on the dark part of the trunk on the left, which is also shown in
Figure 7 for an easier comparison.

Fig. 7. A close-up comparison of the method by Gallo et al. (left) and ours (right) for
the inset marked with the red box in Figure 6(a). Note how our method produces a
better contrast in the dark area of the trunk, thanks to the fact that we use a larger
set of images for each pixel: Gallo et al. discard a whole patch if enough of the pixels
it contains are detected as outliers, see text.

5 Limitations and Future Work

The results we presented show that our algorithm can deal with many of the
situations in which standard methods may fail. Our method also tolerates a
small amount of blur, as in the case of the mouth of the horse in the bright LDR
image of Figure 9. However, sampling the whole irradiance range often requires
fairly long exposures, and can therefore introduce a large amount of blur, thus
potentially causing the proposed algorithm to fail. We plan to address the case
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Fig. 8. A comparison between the method by Zhang and Cham (on the left) and our
algorithm. Note the artifacts due to ghosting in the clouds. Image stack courtesy of
Wei Zhang.

(a) (b) (c)

Fig. 9. A comparison with the method by Kang et al. [17] (a) and our algorithm (c).
The regions within the green boxes are blown-up for comparison in (b), where the
arrows point to the artifacts produced by the method by Kang et al. (left column).
The bottom row shows the original images from the stack. Image stack courtesy of
Sing Bing Kang.

(a) (b)

(d)

(e)

Fig. 10. A comparison with the method by Zimmer et al. On the left the full result of
our algorithm, with the red blocks indicating the locations of the insets on the right.
(a) and (e) are their results while (b) and (d) are ours. Notice how our method solves
the ghosting problems apparent in the results by Zimmer et al. (insets (a) and (e) are
from the project website [29]). Image stack courtesy of Henning Zimmer.
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(a) (b)

Fig. 11. High-dynamic-range images of scenes containing water are notoriously difficult
to capture due to the non-rigid motion of the water, as in the case of the LDR shots
shown in the bottom row. A single, rigid homography only succeeds in registering the
static parts of the scene (a), whereas our method (b) creates a picture that is as crisp
as if the three LDR images used to generate it were taken at the same time.

of stacks affected by strong blur with a combination of an increased robustness
to noise for the dense correspondences step, and a more sophisticated completion
scheme.

Figure 12 summarizes the potential failure cases of the proposed approach.
Our method may fail when a large region of the reference image is completely
saturated (or under-exposed), as in the sky of this example. In such cases, in
addition to failing in capturing the whole irradiance range, Poisson blending
may introduce small bleeding artifacts (Figure 12(d)). Finally, very small objects
might cause problems as in the region indicated by the square in Figure 12(d),
where the two pedestrians are completely included in the bounding box around
the un-matched regions in Figure 12(g); for this reason, the patch from the
source image happens to be consistent with the reference image and is therefore
used, thus causing local inconsistency between reference and warped source. Our
experiments indicate that such situations are extremely uncommon.

In our future work, we plan on addressing these issues by combining infor-
mation from other images in the stack instead of limiting the search to either
the source or the reference.

6 Conclusions

We have presented a method to process a stack of differently exposed pictures
taken with a hand-held camera, and in the presence of motion in the scene. Most
research in this area either focuses on rigid registration of the images or assumes
registration and tries to address the fact that the scene is dynamic. We solve for
both problems at the same time, and show that our algorithm produces registered
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. (a): reference image, (b): source image, (c) dense correspondences, (d) final
results. Below each image is the respective blowup from the region marked in (d). (Note
that the contrast of (f) through (h) has been adjusted to make the problem look more
obvious.) See Section 5.

images which, when fused together, are virtually artifact-free. We demonstrate
that the robustness of our algorithm is superior to the previous work by means of
comparisons. We have applied our method in the context of HDR imaging using
exposure stacks, but the same approach can make other applications of burst
photography, such as capturing focus stacks and denoising of low-light images
by combining several exposures, more practical.
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